Unipolar Sine Multicarrier SPWM Control Strategies for Seven - Level Cascaded Inverter

M.Malarvizhi ¹, R.Nagarajan ², M.Meenakshi ³, R. Banupriya ⁴

^{1,2} Professor, Dept. of Electrical and Electronics Engineering, Gnanamani College of Technology, Namakkal, India.
 ³ Assistant Professor, Dept. of Electrical and Electronics Engineering, M.A.M. School of Engineering, Trichy, India.
 ⁴ Assistant Professor, Dept. of Electrical and Electronics Engineering, P.G.P. College of Engineering and Technology, Namakkal, India.

Abstract - In this paper, novel multicarrier pulse width modulation technique which uses unipolar sine carrier waveform is proposed for seven-level cascaded inverter. In each carrier waveform different techniques such as phase disposition (PD), inverted phase disposition (IPD), phase opposition disposition (POD) and alternative phase opposition disposition (APOD) are implemented. The fundamental output voltage and harmonics obtained in each method are compared with the output waveform obtained with the triangular carrier waveform. The proposed switching technique enhances the fundamental component of the output voltage and improves total harmonic distortion. The different PWM methodologies adopting the constant switching frequency multicarrier with different modulation indexes are simulated for a 1kW, 3\phi inverter using MATLAB/SIMULINK. The effect of switching frequency on the fundamental output voltage and harmonics are also analyzed.

Index Terms – Modulation Index (MI), Total Harmonic Distortion (THD) and Triangular Multicarrier SPWM (TMC SPWM), Unipolar Sine Multicarrier SPWM (USMC SPWM).

1. INTRODUCTION

The multilevel inverter is an effective solution for increasing power and reducing harmonics of ac waveform [1]. The elementary concept of a multilevel converter to achieve higher power is to use a series of power semiconductor switches with several lower voltage dc sources to perform the power conversion by synthesizing a staircase voltage waveform. Capacitors, batteries, and renewable energy voltage sources can be used as the multiple dc voltage sources. The commutation of the power switches aggregate these multiple dc sources in order to achieve high voltage at the output; however, the rated voltage of the power semiconductor switches depends only upon the rating of the dc voltage sources to which they are connected [2].

In this paper, constant switching frequency multicarrier pulse width modulation method is used for the multilevel inverter [3]. The control objective is to compare the reference sine wave with multicarrier waves for three phase seven-level cascaded inverters. Multilevel voltage source inverter (MVSI) structure is very popular especially in high power DC to AC power conversion applications. It offers several advantages that make it preferable over the conventional voltage source inverter

(VSI). These include the capability to handle higher DC link voltage; the stress on each switching device can be reduced in proportional to the higher voltages [4]. Consequently, in some applications, it is possible to avoid expensive and bulky stepup transformer. Another significant advantage of a multilevel output is better sinusoidal voltage waveform. As a result, a lower total harmonic distortion (THD) is obtained [5], [6].

The concept of multilevel converter has been introduced since 1975 [7]. The term multilevel began with the three-level converter. Subsequently, several multilevel converter topologies have been developed, such as the Diode Clamped Multilevel Inverter (DCMLI) also known as Neutral Point Clamped (NPC) Inverter, Flying Capacitor Multilevel Inverter (FCMLI) and Cascaded Multilevel Inverter (CCMLI) [8], [9]. Among them, CCMLI topology is the most attractive, since it requires the least number of components and increases the number of levels in the inverter without requiring high ratings on individual devices and the power rating of the CCMLI is also increased. It also results in simple circuit layout and is modular in structure. Furthermore, CCMLI type of topology is free of DC voltage balancing problem, which is a common issue facing in the DCMLI and FCMLI topologies [10], [11].

Numerous industrial applications have begun to require higher power apparatus in recent years. Some medium voltage motor drives and utility applications require medium voltage and megawatt power level. For a medium voltage grid, it is troublesome to connect only one power semiconductor switch directly [12]. As a result, a multilevel power converter structure has been introduced as an alternative in high power and medium voltage situations. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic, wind, and fuel cells can be easily interfaced to a multilevel converter system for high power application [13]

In motor applications, high dv/dt in power supply generates high stress on motor windings and requires additional motor insulation. Further; high dv/dt of semiconductor devices increases the electromagnetic interference (EMI), commonmode voltage and possibilities of failure on motor [14], [15].

ISSN: 2454-6410 ©EverScience Publications 111

By increasing the number of levels in the output waveform, the switching dv/dt stress is reduced in the multilevel inverter [16], [17]. Multilevel inverters are suitable for power electronics applications such as Flexible AC Transmission Systems, renewable energy sources, uninterruptible power supplies, electrical drives and active power filters.

2. CASCADED MULTILEVEL INVERTER

The single-phase structure of three phase seven-level cascaded inverter is illustrated in Figure 1. Each separate dc source is connected to a single-phase full-bridge, or H-bridge, inverter. Each inverter can generate three different outputs voltage level, $+V_{dc}$, 0 and $-V_{dc}$, by connecting the dc source to the ac output by different switching combinations of the four semiconductor switches T1, T2, T3 and T4. To obtain $+V_{dc}$, switches T1 and T2 are tuned on, whereas $-V_{dc}$ can be obtained by tuning on switches T3 and T4, By turning on T1 and T3 or T2 and T4, the output voltage is 0, The ac outputs of each of the full-bridge inverter levels are connected in series such that the synthesized voltage waveform is the sum of the inverter outputs [18], [19].

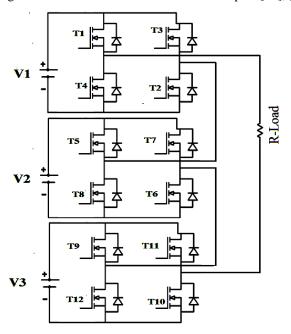


Figure 1 1φ structure of seven-level CCMLI

The CCMLI is producing seven-level output and they are $3V_{\rm dc}$, $2V_{\rm dc}$, 0, $-V_{\rm dc}$, $-2V_{\rm dc}$ and $-3V_{\rm dc}$. This topology is suitable for applications where separate dc voltage sources are available, such as photovoltaic (PV) generators, fuel cells and batteries. The phase output voltage is generated by the sum of two output voltage of the full bridge inverter modules. The circuit in Figure 1 utilizes three independent dc sources and consequently will create an output phase voltage with seven-level. In general, if N is the number of independent dc sources per phase, then the following relations apply [20]:

$$m = 2N + 1 \tag{1}$$

$$q = 2(m-1) \tag{2}$$

Where m is the number of levels and q is the number of switching devices in each phase

The most well known SPWM which can be applied to a CCMLI is the Phase-Shifted SPWM. This modulation technique is the same as that of the conventional SPWM technique which is applied to a conventional single phase fullbridge inverter, the only difference being that it utilizes more than one carrier. The number of carriers to be used per phase is equal to twice the number of dc voltage sources per phase (2N) [21]. Figure 2 presents the simulation model of a three-phase seven-level **CCMLI** and is developed using MATLAB/SIMULINK. The simulation results are obtained for the output phase voltage and line voltage of the three phase seven-level CCMLI with 1kW, 3\phi resistive loads for various PWM techniques.

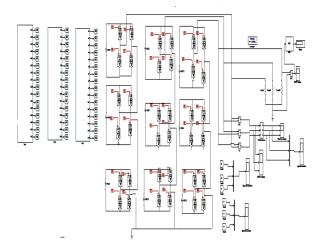


Figure 2 Simulation model of 3φ seven-level CCMLI

3. MODULATION TECHNIQUES

The Pulse Width Modulation (PWM) control strategies development tries to reduce the total harmonic distortion (THD) of the output voltage. Any deviation in the output voltage of the sinusoidal wave shape will result in harmonic currents in the load and this harmonic current produces the electromagnetic interference (EMI), harmonic losses and torque pulsation in the case of motor drives. Increasing the switching frequency of the PWM pattern reduces the lower frequency harmonics by moving the switching frequency carrier harmonic and associated sideband harmonics away from the fundamental frequency component [22]. This increased switching frequency reduces harmonics, which results in a lower THD with high quality output voltage waveforms of desired fundamental RMS value and frequency which are as close as possible to sinusoidal wave shape [23].

The carrier frequency defines the switching frequency of the converter and the high order harmonic components of the output voltage spectrum and the sidebands occur around the carrier frequency and its multiples. The higher switching frequency can be employed for low and medium power inverters, whereas, for high power and medium voltage applications the switching frequency should be low. Harmonic reduction can then be strictly related to the performance of an inverter with any switching strategy [24], [25]. The three phase multilevel inverter requires three modulating signals or reference signals which are three sine-waves with 120 degree phase shift and equal in magnitudes. In this paper, new carrier based PWM techniques are developed which are as Unipolar Sine Multicarrier Sinusoidal PWM (USMC SPWM).

Each carrier is to be compared with the corresponding modulating sine wave [26], [27]. The reference or modulation waveform has peak amplitude A_r and frequency f_r and it is centered in the middle of the carrier set. The general principle of a carrier based PWM technique is the comparison of a sinusoidal waveform with a carrier waveform, this typically being a triangular carrier waveform. The reference is continuously compared with the carrier signal. If the reference is greater than the carrier is switched on, and if the reference is less than the carrier is switched on, and if the reference corresponding to that carrier is switched off [28], [29]. In multilevel inverters, the amplitude modulation index, M_a and the frequency ratio, M_f are defined as,

$$\mathbf{M_a} = \frac{\mathbf{A_r}}{(\mathbf{m} - 1)\mathbf{A_c}} \tag{3}$$

$$M_{f} = \frac{f_{c}}{f_{r}} \tag{4}$$

Where A_r and A_c are amplitude of reference and carrier signal respectively. f_r and f_c are frequency of reference and carrier signal respectively.

In this paper, modulation indexes used are 0.7, 0.8, 0.9 and 1 for seven-level CCMLI. For multilevel applications, carrier based PWM techniques with multiple carriers are used. The Multicarrier Modulation (MCM) techniques can be divided in to the following categories such as [30], [31],

- 1. Phase disposition (PD) where all the carriers are in phase.
- 2. Inverted phase disposition (IPD) where all the carriers are in phase and is inverted.
- 3. Phase opposition disposition (POD) where the carriers above the zero reference are in phase but shifted by 180 degrees from those carriers below the zero reference.
- 4. Alternative phase opposition disposition (APOD) where each carrier band is shifted by 180 degrees from the

adjacent carrier bands [2].

The above modulation strategies are implemented for different carrier such as unipolar sine wave. The phase voltage and line voltage waveform, harmonic spectrums of the line voltage are shown for different modulation techniques by doing simulation using MATLAB/SIMULINK for seven-level CCMLI and the results obtained are compared.

3.1. Triangular Multicarrier SPWM (TMC SPWM)

The performance of the multilevel inverter is based on the multicarrier modulation technique used. Two-level to multilevel inverters are made using several triangular carrier signals and one reference signal per phase. Carrara [5] developed multilevel sub harmonic PWM (SH-PWM), which is as follows, for m-level inverter, m-1 carriers [32] with the same frequency f_c and same amplitude A_c are disposed such that the bands they occupy are contiguous. They are defined as

$$C_{i} = A_{c} \left((-1)^{f(i)} y_{c}(\omega_{c}, \varphi) + t - \frac{m}{2} \right),$$

$$i = 1, \dots, (m-1)$$

$$(5)$$

Where y_c is a normalized symmetrical triangular carrier defined as.

$$y_{c}(\omega_{c}, \varphi) = (-1)^{[\alpha]} ((\alpha \mod 2) - 1) + \frac{1}{2}$$
 (6)

$$\alpha = \frac{\omega_{\rm C}t + \varphi}{\pi}, \omega_{\rm C} = 2\pi f_{\rm C} \tag{7}$$

 ϕ represents the phase angle of $y_c.~y_c$ is a periodic function with the $~period~T_C=\frac{2\pi}{\omega_C}$. It is shown that using symmetrical

triangular carrier generates less harmonic distortion at the inverters output [33], [34].

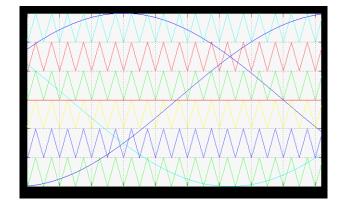


Figure 3(a) PD TMC SPWM with $M_a = 1$

The multicarrier modulation techniques such as PD, IPD, POD and APOD are implemented using triangular multicarrier signals for seven-level CCMLI with different modulation indexes and are shown in Figure 3(a) and 3(b) respectively.

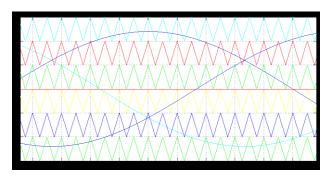
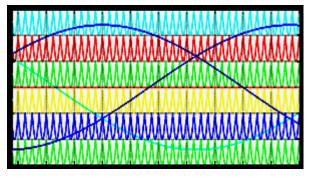



Figure 3(b) IPD TMC SPWM with $M_a = 0.8$

3.2. Unipolar Sine Multicarrier SPWM (USMC SPWM)

The In this PWM technique the sinusoidal signal is converted in to the unipolar sinusoidal signal. The entire negative half cycles in the waveform is converted into positive half cycles with the same amplitude and frequency. This signal is same as that of the full wave rectifier output. That is the signal has only continuous positive half cycles. This is called unipolar sine wave. The control strategy uses the same reference (synchronized sinusoidal signal) as the conventional SPWM while the carrier triangle is a modified one. The control scheme uses a high frequency sine carrier that helps to maximize the output voltage for a given modulation index. The multicarrier modulations techniques (PD, IPD, POD and APOD) are implemented using unipolar sine multicarrier signals for seven-level CCMLI with different modulation indexes and are shown in Figure 4(a) and 4(b) respectively.

. Figure 4(a): IPD USMC SPWM with Ma=0.8

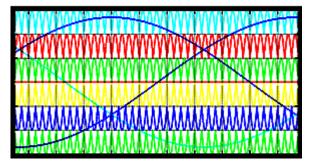


Figure 4(b): POD USMC SPWM with Ma=0.9

4. SIMULATION RESULTS

The seven-level cascaded multilevel inverter model with different modulation indexes was implemented in MATLAB/SIMULINK software to demonstrate the feasibility of PWM techniques. Phase disposition, inverted phase disposition, phase opposition disposition and alternative phase opposition disposition techniques are used for the various multicarrier SPWM techniques such as

- Triangular Multicarrier Sinusoidal PWM
- 2. Unipolar Sine Multicarrier Sinusoidal PWM

The line voltage waveform with its harmonic spectrum at fundamental frequency of 50Hz and switching frequency of 2kHz and 10kHz are obtained for the proposed CCMLI. For comparison, the total harmonic distortion (THD) was chosen to be evaluated for all the modulation techniques. In order to get THD level of the waveform, a Fast Fourier Transform (FFT) is applied to obtain the spectrum of the output voltage [35] – [39]. The THD is calculated using the following equation in this work

$$THD = \frac{\sqrt{\sum_{n=2}^{80} v_n^2}}{v_1}$$
 (9)

Where n is the harmonic order, v_n is the RMS value of the nth harmonic component and v_1 is the RMS value of the fundamental component. Here the %THD is calculated up to a harmonic order which is twice the switching frequency. For 2kHz switching frequency up to 80^{th} order harmonics is taken in to account for calculating THD and for 10 kHz switching frequency up to 400^{th} order harmonics is taken in to account for calculating THD.

4.1. Triangular Multi Carrier SPWM (TMC SPWM)

Figure 5(a) and 5(b) show the line voltage waveforms and the percentage THD of the line voltage for seven level using the phase disposition technique for triangular multi carrier sinusoidal PWM with Ma=1.

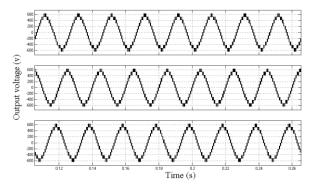


Figure 5(a) Line Voltage for PD SPWM with $M_a = 1$

ISSN: 2454-6410 ©EverScience Publications 114

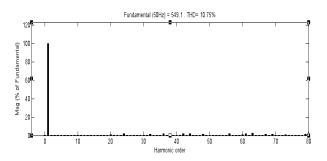


Figure 5(b) Line Voltage % THD for PD SPWM with $M_a = 1$

Table 1 shows the percentage line voltage THD for the seven-level CCML with triangular multicarrier signal with different multicarrier PWM techniques with a switching frequency of 2kHz and 10kHz respectively for different modulation indexes.

Table 1: Line voltage %THD for CCMLI with TMC SPWM

Switching	Modulation	Modulation Indexes					
frequency	Technique	$M_a=1$	$M_a = 0.9$	$M_a = 0.8$	$M_a = 0.7$		
	PD	10.75	12.69	13.19	16.61		
2kHz	IPD	10.75	12.69	13.19	16.61		
	POD	15.22	20.62	21.98	20.10		
	APOD	14.91	18.04	19.65	23.86		
	PD	10.90	12.78	13.40	16.15		
10kHz	IPD	10.90	12.78	13.40	16.15		
	POD	16.25	20.92	22.31	21.41		
	APOD	15.09	18.53	20.53	24.65		

From the above table, it is observed that, when the switching frequency of the CCMLI is increased, the percentage line voltage THD is reduced for the PD and IPD schemes with modulation index of 0.7 in seven level CCMLI. In the POD and APOD schemes, when the switching frequency of the CCMLI is increased, the percentage line voltage THD is reduced with modulation index of 0.8. If the output voltage level increases the percentage line voltage THD decreases. From the simulation result in the triangular multi carrier SPWM technique PD and IPD PWM schemes, from 3rd order harmonics to 17th order harmonics and higher odd order harmonics (above 17th harmonics) are less than 1%. Few of the even order harmonics from 18th harmonics to 54th harmonics for the above mentioned scheme are less than 2%. The dominant 57th harmonic factor is about 2% for the PD and IPD schemes.

In the POD scheme, from 3rd odd order harmonics to 19th odd order harmonics are less than 1% and all even order harmonics are zero. Few of the odd order harmonics from 21st harmonics to 69th harmonics are 1% to 2%. The dominant 39th and 41st harmonic factor are 5.37% and 5.59% respectively for the POD scheme. In the APOD scheme, from 3rd odd order harmonics to 25th odd order harmonics are less than 1% and all even order harmonics are 0.01%. Few of the odd order harmonics from 27th harmonics to 69th harmonics are present. The dominant 29th

and 51st harmonic factor are 4.70% and 4.59% respectively for the APOD scheme. It is observed that, when the switching frequency of the CCMLI is increased, the percentage line voltage THD, the fundamental phase and line voltage are decreased very slightly for the PD and IPD schemes. In the POD and APOD schemes, if the switching frequency is increased, the percentage line voltage THD is increased very slightly and the fundamental phase and line voltage are decreased very slightly. Also the fundamental line voltage is maximum for POD and APOD schemes and is minimum for PD and IPD schemes.

4.2. Unipolar Sine Multi Carrier SPWM (USMC SPWM)

Figure 6(a) and 6(b) show the line voltage waveforms and the percentage THD of the line voltage for seven-level using the inverted phase disposition technique for unipolar sine multicarrier sinusoidal PWM with Ma=1.

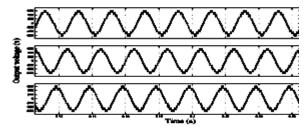


Figure 6(a) Line Voltage for PD SPWM with $M_a = 1$

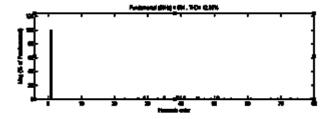


Figure 6(b): Line Voltage %THD for IPD SPWM with Ma=1

Table 2 shows the percentage line voltage THD for the seven-level CCML with unipolar sine multicarrier signal with different multicarrier PWM techniques with a switching frequency of 2kHz and 10kHz respectively for different modulation indexes.

Table 2: Line voltage %THD for CCMLI with USMC SPWM

Switching	Modulation	Modulation Indexes				
frequency	Technique	$M_a=1$	$M_a = 0.9$	$M_a = 0.8$	$M_a = 0.7$	
	PD	11.30	12.47	13.19	17.15	
2kHz	IPD	11.30	12.47	13.19	17.15	
	POD	18.80	23.00	22.67	23.13	
	APOD	17.78	19.31	20.10	24.90	
	PD	11.84	11.78	13.62	17.40	
10kHz	IPD	11.84	11.78	13.62	17.40	
	POD	18.32	23.09	24.64	28.17	
	APOD	18.39	20.51	22.09	27.15	

From the above table, it is observed that, when the switching frequency of the CCMLI is increased, the percentage line voltage THD is reduced for the PD and IPD schemes with modulation index of 0.9. In the POD scheme, if the switching frequency of the CCMLI is increased, the percentage line voltage THD is reduced with modulation index of 1 in seven-level CCMLI. If the output voltage level increases the percentage line voltage THD decreases.

From the simulation result in the unipolar sine multicarrier SPWM technique PD and IPD PWM schemes, from 3rd order harmonics to 79th order harmonics except 57th harmonics are less than 1% and are negligible. The dominant 57th harmonic factor is 1.28% for the PD and IPD schemes. In the POD PWM scheme, from 3rd order harmonics to 79th order harmonics except 73rd and 79th harmonic factor are less than 1% and are negligible. The dominant 73rd and 79th harmonic factor are 2.15% and 7.01% respectively for the POD scheme. In the APOD scheme, from 3rd order harmonics to 6th order harmonics and 24th order harmonics to 56th order harmonics and 56th even order harmonics to 78th even order harmonics are less than 1%. Few of the odd order harmonics from 7th harmonics to 23rd harmonics and 57th harmonics to 79th harmonics are 1% to 3.5%. The dominant 69th harmonic factor is 5.15% for the APOD scheme. It is observed that when the switching frequency of the CCMLI is increased, the percentage line voltage THD is increased and the fundamental phase and line voltage are decreased very slightly for the PD, IPD and APOD schemes. In the POD scheme, if the switching frequency is increased, the percentage line voltage THD, the fundamental phase and line voltage are increased. Also the fundamental line voltage is maximum for APOD scheme and is minimum for POD scheme.

5. CONCLUSION

In this paper, the performance of different multicarrier PWM techniques which uses triangular multicarrier waveform and unipolar sine multicarrier waveform in multilevel inverters is found out. In all the above PWM techniques, different modulation strategies such as phase disposition (PD), inverted phase disposition (IPD), phase opposition disposition (POD) and alternative phase opposition disposition (APOD) are implemented. The results are verified by doing simulation for 1kW, 3φ seven-level cascaded inverter in quantities MATLAB/SIMULINK. The output like fundamental phase and line voltage, percentage THD of the line voltage and percentage dominant harmonic factor are measured in the all the above PWM schemes and the results are compared.

REFERENCES

[1] Mariusz Malinowski, K. Gopakumar, Jose Rodriguezand Marcelo A. Pérez, "A Survey on Cascaded Multilevel Inverters" IEEE Transactions on Industrial Electronics, vol. 57, n. 7, July 2010, pp 2197 – 2206.

- [2] R.Nagarajan and M,Saravanan, "Performance Analysis of Multicarrier PWM Strategies for Cascaded Multilevel Inverter," European Journal of Scientific Research (EJSR), Vol.92 No.4, pp. 608-625, Dec. 2012.
- [3] Jang-Hwan Kim, A carrier-Based PWM Method for Three-Phase Four-Leg Voltage Source Converters", IEEE transactions on power electronics, vol. 19, n.1, January 2004.
- [4] R.Nagarajan and M,Saravanan, "A Carrier Based Pulse Width Modulation Control Strategies for Cascaded Multilevel Inverter," International Review on Modeling and Simulations (IRMOS), Vol 6.No1, pp-8-19, Feb. 2013.
- [5] G.Carrara, S.Gardella, M.Marchesoni, R.Salutari, G.Sciutto, "A New Multilevel PWM Method: A Theoretical Analysis," IEEE Trans. Power Electronics, vol. 7, n.3, July 1992, pp 497-505.
- [6] R.Nagarajan and M, Saravanan, "Comparison of PWM Control Techniques for Cascaded Multilevel Inverter" International Review of Automatic control (IRACO), Vol.5, No.6, pp. 815-828. Nov. 2012.
- [7] G. Vidhya Krishnan, R.Nagarajan, T. Durka, M.Kalaiselvi, M.Pushpa and S. Shanmuga priya, "Vehicle Communication System Using Li-Fi Technology," International Journal of Engineering And Computer Science (IJECS), Volume 6, Issue 3, pp. 20651-20657, March 2017.
- [8] S.M.Ayob, Z.Salam, "Trapezoidal PWM Scheme for Cascaded Multilevel Inverter" First International Power and Energy Conference, November 2006, pp 368-372.
- [9] M.Dharani Devi and R.Nagarajan, "Implementation of Different PWM Control Strategies for Cascaded MLI," Journal of Network Communications and Emerging Technologies (JNCET), Volume 7, Issue 7, pp. 49- 55, July-2017.
- [10] R.Prabhu, R.Nagarajan, N.Karthick and S.Suresh, "Implementation of Direct Sequence Spread Spectrum Communication System Using FPGA," International Journal of Advanced Engineering, Management and Science (IJAEMS), Vol-3.Issue-5, pp. 488-496, May. 2017
- [11] Rodriguez, Jih-sheng lai, and F.Zheng peng, "Multilevel Inverters; A Survey of Topologies, Controls, and Applications," IEEE Trans.Ind.Electron, vol.49, n. 4, pp724-738, Aug. 2002.
- [12] R. Banupriya, R.Nagarajan, M.Malarvizhi and M.Dharani Devi, "Multicarrier - Based PWM Control Strategies for Five - Level CMLI." Journal of Network Communications and Emerging Technologies (JNCET), Vol. 7, Issue 11, November - 2017, pp. 33-39.
- [13] M.Dharani Devi, M.Malarvizhi and R.Nagarajan, "Development of Multicarrier SPWM Techniques for Cascaded MLI." International Journal of Computational Engineering Research (IJCER), Vol. 7, *Issue* 10, October 2017, pp. 44-52.
- [14] J.Chandramohan, R.Nagarajan, K.Satheeshkumar, N.Ajithkumar, P.A.Gopinath and S.Ranjithkumar, "Intelligent Smart Home Automation and Security System Using Arduino and Wi-fi," International Journal of Engineering And Computer Science (IJECS), Volume 6, Issue 3, pp. 20694-20698, March, 2017.
- [15] Samir koaro, PabloLezana, Mauricio Anguio and Jose Rodriguez, "Multicarrier PWM DC-Link ripple forward compensation for multilevel inverters," IEEE Trans. Power. Electron., vol. 123, n. 1, pp. 52-56, Jan 2008.
- [16] K. Anandhi and Dr. R. Nagarajan, "Mutex-Heart: Fail Safe Dual Chamber Cardiac Pacemaker Device with Rate Responsive Control and Cryptographic Security," IJSRD- International Journal for Scientific Research & Development. Vol. 3, Issue- 2, pp. 489-493, 2015.
- [17] Fang. Z. Peng, John W.Mckeever, and Donald J.Adams, "A Power line conditioner using Cascade Multilevel Inverters for Distribution systems" IEEE Transactions on Industrial Applications, vol. 34, n.6, pp 1293-1298, Nov/Dec 1998.
- [18] J.Chandramohan, R.Nagarajan, M.Ashok kumar, T.Dineshkumar, G.Kannan and R.Prakash, "Attendance Monitoring System of Students Based on Biometric and GPS Tracking System," International Journal of Advanced Engineering, Management and Science (IJAEMS), Vol-3.Issue-3, pp. 241-246, Mar. 2017.
- [19] B.P.Mcgrath, D.G.Holmes, "Multicarrier PWM strategies for multilevel inverters," IEEE Trans. Ind.Electron, vol 49, n.4, pp 858-867, Aug.2002.

- [20] R Rameshkumar and R Nagarajan, "Sine Multicarrier SPWM Technique for Seven Level Cascaded Inverter," CiiT-Programmable Device Circuits and Systems. Vol. 5, Issue- 6, 2013.
- [21] Dr.R.Nagarajan, S.Sathishkumar, K.Balasubramani, C.Boobalan, S.Naveen and N.Sridhar. "Chopper Fed Speed Control of DC Motor Using PI Controller," IOSR- Journal of Electrical and Electronics Engineering (IOSR-JEEE), Volume 11, Issue 3, Ver. I, pp. 65-69, May – Jun. 2016.
- [22] R.Nagarajan and M,Saravanan "Staircase Multicarrier SPWM Technique for Nine Level Cascaded Inverter," 2013 International Conference on Power, Energy and Control (ICPEC), IEEE Press, pp-668-675. 2013.
- [23] Lion M.Tolbert and Thomas.G.Habetler, "Novel Multi Level Inverter Carrier Based PWM methods", IEEE IAS, 1998, pp 1424-1431.
- [24] N.Karthick, R.Nagarajan, S.Suresh and R.Prabhu, "Implementation of Railway Track Crack Detection and Protection," International Journal Of Engineering And Computer Science (IJECS), Volume 6, Issue 5, May 2017, pp. 21476-21481, DOI: 10.18535/ijecs/v6i5.47
- [25] M.Padmavathi and R.Nagarajan, "Smart Intelligent ATM Using LABVIEW," International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 5, Issue 5, pp. 41- 45, May-2017.
- [26] R.Nagarajan and M, Saravanan. "Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter," Journal of Power Electronics, Vol.14, No.1, pp. 48-60, Jan. 2014.
- [27] D.G.Holmes and T.A.Lipo, Pulse Width Modulation For Power Converters (Wiley Inter-science, 2003).J. Proakis, Digital Communications. New York: McGraw-Hill, 1995.
- [28] R.Nagarajan, S.Sathishkumar, S.Deepika, G.Keerthana, J.K.Kiruthika and R.Nandhini, "Implementation of Chopper Fed Speed Control of Separately Excited DC Motor Using PI Controller", International Journal of Engineering And Computer Science (IJECS), Volume 6, Issue 3, pp. 20629-20633, March, 2017.
- [29] D.G.Holmes and B.P.Mcgrath, "Opportunities for harmonic cancellation with carrier based PWM for two level and multilevel cascaded inverters", in conf.prec IEEE/IAS Annual meeting, 1999.
- [30] R.Nagarajan, R.Yuvaraj, V.Hemalatha, S.Logapriya, A.Mekala and S.Priyanga, "Implementation of PV - Based Boost Converter Using PI Controller with PSO Algorithm," International Journal of Engineering And Computer Science (IJECS), Volume 6, Issue 3, pp. 20479-20484, March, 2017.
- [31] Ms. C. Hemalatha, Mr. R. Nagarajan, P. Suresh, G. Ganesh Shankar and A. Vijay, "Brushless DC Motor Controlled by using Internet of Things," IJSTE - International Journal of Science Technology & Engineering, Volume -3.Issue-09, pp. 373-377, March- 2017.
- [32] R.Nagarajan, J.Chandramohan, S.Sathishkumar, S.Anantharaj, G.Jayakumar, M.Visnukumar and R.Viswanathan, "Implementation of PI Controller for Boost Converter in PV System," International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE). Vol.11, Issue.XII, pp. 6-10, December. 2016
- [33] M.Elangovan, R.Yuvara, S.Sathishkumar and R.Nagarajan, "Modelling and Simulation of High Gain Hybrid Boost Converter," International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 5, Issue 6, pp. 9- 14, June-2017
- [34] S.Suresh, R.Nagarajan, L.Sakthivel, V.Logesh, C.Mohandass and G.Tamilselvan, "Transmission Line Fault Monitoring and Identification System by Using Internet of Things," International Journal of Advanced Engineering Research and Science (IJAERS), Vol - 4.Issue - 4, pp. 9-14, Apr- 2017.
- [35] R.Nagarajan, J.Chandramohan, R.Yuvaraj, S.Sathishkumar and S.Chandran, "Performance Analysis of Synchronous SEPIC Converter for a Stand-Alone PV System," International Journal of Emerging Technologies in Engineering Research (IJETER), Vol. 5, Issue - 5, pp. 12-16, May-2017

- [36] M. Sridhar, S.Sathishkumar, R.Nagarajan and R.Yuvaraj, "An Integrated High Gain Boost Resonant Converter for PV System," International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 5, Issue 6, pp. 54- 59, June-2017.
- [37] J.Hamman and F.S.Van Der merwe, "Voltage harmonics generated by voltage fed inverters using PWM natural sampling" IEEE Trans. Power Electron, vol PE-3,n.3, pp.297-302, Jul.1988.
- [38] S.Suresh, R.Nagarajan, R.Prabhu and N.Karthick, "Energy Efficient EO Algorithm for Wireless Transceivers," International Journal of Engineering and Computer Science (IJECS), Volume 6, Issue 7, July 2017, pp. 21982-21985, DOI: 10.18535/ijecs/v6i7.15.
- [39] M.Meenakshi, R.Nagarajan, R. Banupriya and M.Dharani Devi, "Stepped Multicarrier SPWM Techniques for Seven - Level Cascaded Inverter," International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 5, Issue 12, pp. 43-49, December-2017.

Authors

M. Malarviazhi received her B.E. in Electronics and Electronics Engineering from Bharathiyar University, Coimbatore, India. She received her M.E. in Power Electronics and Drvies from Anna University, Chennai, India, She received her Ph.D in Electrical Engineering from Anna University, Chennai, India, She has worked in the various institution as an Associate Professor. She is currently working as an Associate Professor of Electrical and Electrical Engineering in Gnanamani College of

Technology, Namakkal, Tamilnadu, India. Her research interest includes Power Systems, Power Electronics and Soft Computing.

R. Nagarajan received his B.E. in Electrical and Electronics Engineering from Madurai Kamarajar University, Madurai, India, in 1997. He received his M.E. in Power Electronics and Drives from Anna University, Chennai, India, in 2008. He received his Ph.D in Electrical Engineering from Anna University, Chennai, India, in 2014. He has worked in the industry as an Electrical Engineer. He is currently working as Professor of Electrical and Electronics Engineering at Gnanamani

College of Technology, Namakkal, Tamilnadu, India. His current research interest includes Power Electronics, Power System, Soft Computing Techniques and Renewable Energy Sources.

M.Meenakshi received her B.E. in Electrical and Electronics Engineering from Anna University, Trichy, India, in 2012. She received her M.E. in Power Electronics and Drives from Anna University, Chennai, India, in 2016. She has worked in the various institution as an Assistant Professor. She is currently working as an Assistant Professor of Electrical and Electronics Engineering at M.A.M.School of Engineering, Trichy, Tamilnadu, India. Her research interest includes Power

Electronics and Renewable Energy Sources.

R. Banupriya received her B.E. in Electrical and Electronics Engineering from Anna University, Chennai, India, in 2010. She received her M.E. Power Electronics and Drives from Anna University, Chennai, India, in 2012. She has worked in the industry as an Asst. Deputy Manager. She is currently working as an Assistant Professor of Electrical and Electronics Engineering at P.G.P. College of Engineering and Technology, Namakkal, Tamilnadu, India. Her research interest

includes Power Electronics and Renewable Energy Sources.